Investigating the Influence of MoS2 Nanosheets on E. coli from Metabolomics Level

نویسندگان

  • Na Wu
  • Yadong Yu
  • Tao Li
  • Xiaojun Ji
  • Ling Jiang
  • Jiajun Zong
  • He Huang
چکیده

Molybdenum disulfide, a type of two-dimensional layered material with unique properties, has been widely used in many fields. However, an exact understanding of its toxicity remains elusive, let alone its effects on the environmental microbial community. In this study, we utilized metabolomics technology to explore the effects of different concentrations of molybdenum disulfide nanosheets on Escherichia coli for the first time. The results showed that with increasing concentration of molybdenum disulfide nanosheets, the survival rate of Escherichia coli was decreased and the release of lactic dehydrogenase was increased. At the same time, intracellular concentrations of reactive oxygen species were dramatically increased. In addition, metabolomics analysis showed that high concentrations of molybdenum disulfide nanosheets (100, 1000 μg/mL) could significantly affect the metabolic profile of Escherichia coli, including glycine, serine and threonine metabolism, protein biosynthesis, urea cycle and pyruvate metabolism. These results will be beneficial for molybdenum disulfide toxicity assessment and further applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Phtocatalytic Activity of α-Fe2O3 Nanoparticles Using 2D MoS2 Nanosheets

α‒Fe2O3/MoS2 nanocomposites were synthesized via hydrothermal method and characterized in terms of crystal structure, particle size and morphology, elemental purity and optical properties. Results confirmed the formation of α‒Fe2O3/MoS2 nanocomposites containing hematite nanoparticles with average diameter of 40 nm and MoS2 nanosheets with hexagonal crystal structure and sheet thickness o...

متن کامل

Fabrication of single-layer MS2 (M=Mo, W) nanosheets using Li battery setup

Lithium intercalation is a convenient method to prepare few-layer and single-layer MS2 (M=Mo, W) nanosheets. This method is, however, very time-consuming (few days) and it is difficult to control the reaction parameters. To overcome these drawbacks, we have proposed a method to use an Li battery set-up to significantly reduce the reaction time (few hours) and electrochemically intercalate lithi...

متن کامل

MoS2 nanosheets as an effective fluorescence quencher for DNA methyltransferase activity detection.

As one of the inorganic graphene analogues, two dimensional MoS2 nanosheets have been drawing extensive attention in the past few years due to their remarkable structural and electronic properties. Herein, a simple signal-on fluorescence DNA methyltransferase (MTase) activity assay using a MoS2 nanosheet mediated fluorescence quenching strategy is described. Briefly, substrate DNA is designed t...

متن کامل

Ferromagnetism in ultrathin MoS2 nanosheets: from amorphous to crystalline

Two-dimensional materials have various applications in the next generation nanodevices because of their easy fabrication and particular properties. In this work, we studied the effects of crystalline order on the magnetic properties of ultrathin MoS2 nanosheets. Results indicate that all the fabricated samples show clear room temperature ferromagnetism. The amorphous sample has the larger satur...

متن کامل

Electrochemically induced Fenton reaction of few-layer MoS2 nanosheets: preparation of luminescent quantum dots via a transition of nanoporous morphology.

Electrochemically induced Fenton (electro-Fenton) reaction was used for efficient and controllable preparation of hydroxyl radicals, leading to the generation of luminescent quantum dots through etching of as-exfoliated MoS2 nanosheets. Morphologic changes of MoS2 nanosheets during the electro-Fenton reaction were monitored using transmission electron microscopy, showing that etching of MoS2 na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016